skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Zhao, Tuowen"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This article presents a code generator for sparse tensor contraction computations. It leverages a mathematical representation of loop nest computations in the sparse polyhedral framework (SPF), which extends the polyhedral model to support non-affine computations, such as those that arise in sparse tensors. SPF is extended to perform layout specification, optimization, and code generation of sparse tensor code: (1) We develop a polyhedral layout specification that decouples iteration spaces for layout and computation; and (2) we develop efficient co-iteration of sparse tensors by combining polyhedra scanning over the layout of one sparse tensor with the synthesis of code to find corresponding elements in other tensors through an SMT solver. We compare the generated code with that produced by a state-of-the-art tensor compiler, TACO. We achieve on average 1.63× faster parallel performance than TACO on sparse-sparse co-iteration and describe how to improve that to 2.72× average speedup by switching the find algorithms. We also demonstrate that decoupling iteration spaces of layout and computation enables additional layout and computation combinations to be supported. 
    more » « less
  2. Many scientific applications compute on sparse data and use a variety of sparse formats because each format has unique space and performance benefits. Optimizing applications that use sparse data involves translating the sparse data into the chosen format and transforming the computation to iterate over that format. This paper presents a formal definition of sparse tensor formats and an automated approach to synthesize the transformation between formats. This approach is unique in that it supports ordering constraints not supported by other approaches and synthesizes the transformation code in a high-level intermediate representation suitable for applying composable transformations such as loop fusion and temporary storay reduction. We demonstrate that the synthesized code for COO to CSR with optimizations is 3.4X faster than TACO, Intel MKL and SPARSKIT while the more complex COO to DIA is slower than TACO but competitive with Intel MKL and SPARSKIT. 
    more » « less
  3. Many scientific applications compute using sparse data and store that data in a variety of sparse formats because each format has unique space and performance benefits. Optimizing applications that use sparse data involves translating the sparse data into the chosen format and transforming the computation to iterate over that format. This paper presents a formal definition of sparse tensor formats and an automated approach to synthesize the transformation between formats. This approach is unique in that it supports ordering constraints not supported by other approaches and synthesizes the transformation code in a high-level intermediate representation suitable for applying composable transformations such as loop fusion and temporary storage reduction. We demonstrate that the synthesized code for COO to CSR with optimizations is 2.85x faster than TACO, Intel MKL, and SPARSKIT while the more complex COO to DIA is 1.4x slower than TACO but faster than SPARSKIT and Intel MKL using the geometric average of execution time. 
    more » « less